A genetic c-Means clustering algorithm applied to color image quantization
نویسنده
چکیده
This paper describes a novel data clustering algorithm, which is a hybrid approach combining a genetic algorithm with the classical c-means clustering algorithm (CMA). The proposed technique is superior to CMA in the sense that it converges to a nearby global optimum rather than a local one. As an application the problem of color image quantization is elaborated. Here, it is shown that substantial improvement of image quality is obtained by using the genetic approach.
منابع مشابه
A comparison of clustering algorithms applied to color image quantization
P. Scheunders Vision Lab, Dept. of Physics, RUCA University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium email: [email protected] Abstract: In this paper color image quantization by clustering is discussed. A clustering scheme, based on competitive learning is constructed and compared to the well-known C-means clustering algorithm. It is demonstrated that both perform equally w...
متن کاملGenetic Algorithms for Large-Scale Clustering Problems
We consider the clustering problem in a case where the distances of elements are metric and both the number of attributes and the number of the clusters are large. Genetic algorithm approach gives in this environment high quality clusterings at the cost of long running time. Three new efficient crossover techniques are introduced. The hybridization of genetic algorithm and k-means algorithm is ...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملRobust Potato Color Image Segmentation using Adaptive Fuzzy Inference System
Potato image segmentation is an important part of image-based potato defect detection. This paper presents a robust potato color image segmentation through a combination of a fuzzy rule based system, an image thresholding based on Genetic Algorithm (GA) optimization and morphological operators. The proposed potato color image segmentation is robust against variation of background, distance and ...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 30 شماره
صفحات -
تاریخ انتشار 1997